Home Cryptocurrency Reconstructing Smooth Local Volatility Surfaces for Cryptocurrency Options

Reconstructing Smooth Local Volatility Surfaces for Cryptocurrency Options

0
Reconstructing Smooth Local Volatility Surfaces for Cryptocurrency Options


  • Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973). https://doi.org/10.1086/260062

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Sabermahani, S., Ordokhani, Y., Rahimkhani, P.: Application of two-dimensional Fibonacci wavelets in fractional partial differential equations arising in the financial market. Int. J. Appl. Comput. Math. 8, 129 (2022). https://doi.org/10.1007/s40819-022-01329-x

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lin, Y.S., Dai, W., Liu, R.: An accurate compact finite difference scheme for solving the American option with M-regime switching model. Int. J. Appl. Comput. Math. 9, 17 (2023). https://doi.org/10.1007/s40819-023-01505-7

    Article 
    MathSciNet 

    Google Scholar
     

  • Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)


    Google Scholar
     

  • Zhou, J., Gu, X.M., Zhao, Y.L., Li, H.: A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black–Scholes model. Int. J. Comput. Math. 101, 989–1011 (2024). https://doi.org/10.1080/00207160.2023.2254412

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Xin, Q., Gu, X.M., Liu, L.B.: A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model. Appl. Math. Comput. 500, 129441 (2025). https://doi.org/10.1016/j.amc.2025.129441

    Article 
    MathSciNet 

    Google Scholar
     

  • Yao, N., Ling, Z., Zhang, J., Xiao, M.: Short maturity conditional Asian options in local volatility models. Math. Financ. Econ. 14, 307–328 (2020). https://doi.org/10.1007/s11579-020-00257-y

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Gong, J., Wang, G.J., Xie, C., Uddin, G.S.: How do market volatility and risk aversion sentiment inter-influence over time? Evidence from Chinese SSE 50 ETF options. Int. Rev. Financ. Anal. 95, 103440 (2024). https://doi.org/10.1016/j.irfa.2024.103440

    Article 

    Google Scholar
     

  • González-Muñoz, R.I., Molina-Muñoz, J., Mora-Valencia, A., Perote, J.: Real options volatility surface for valuing renewable energy projects. Energies 17, 1225 (2024). https://doi.org/10.3390/en17051225

    Article 

    Google Scholar
     

  • Kim, S., Lyu, J., Lee, W., Park, E., Jang, H., Lee, C., Kim, J.: A practical Monte Carlo method for pricing equity-linked securities with time-dependent volatility and interest rate. Comput. Econ. 63, 2069–2086 (2024). https://doi.org/10.1007/s10614-023-10394-3

    Article 

    Google Scholar
     

  • Guidolin, M., Wang, K.: The empirical performance of option implied volatility surface-driven optimal portfolios. Phys. A Stat. Mech. Appl. 618, 128496 (2023). https://doi.org/10.1016/j.physa.2023.128496

    Article 

    Google Scholar
     

  • Gong, W., Xu, Z.: Reconstruction of local volatility surface from American options. J. Inverse Ill-posed Probl. 31, 91–102 (2023). https://doi.org/10.1515/jiip-2019-0085

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yoo, C., Kwak, S., Hwang, Y., Jang, H., Kim, H., Kim, J.: Calibration of local volatility surfaces from observed market call and put option prices. Comput. Econ. 65, 1147–1168 (2025). https://doi.org/10.1007/s10614-024-10590-9

    Article 

    Google Scholar
     

  • Chen, Z., Li, Y., Yu, C.L.: Modeling implied volatility surface using B-splines with time-dependent coefficients predicted by tree-based machine learning methods. Mathematics 12, 1100 (2024). https://doi.org/10.3390/math12071100

    Article 
    MathSciNet 

    Google Scholar
     

  • Hwang, Y., Lee, T., Kwak, S., Kang, S., Ham, S., Kim, J.: Robust and accurate reconstruction of the time-dependent continuous volatility from option prices. Comput. Appl. Math. 43, 307 (2024). https://doi.org/10.1007/s40314-024-02837-w

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Pagnottoni, P.: Neural network models for bitcoin option pricing. Front. Artif. Intell. 2, 5 (2019). https://doi.org/10.3389/frai.2019.00005

    Article 

    Google Scholar
     

  • Chinazzo, C., Jeleskovic, V.: Evaluating bitcoin price volatility forecasting models: a comparative analysis. J. Res. Innov. Technol. 3, 1 (2024). https://doi.org/10.57017/jorit.v3.1(5).01

    Article 

    Google Scholar
     

  • Hilliard, J.E., Hilliard, J., Ngo, J.T.: Implied parameter estimation for jump diffusion option pricing models: pricing accuracy and the role of loss and evaluation functions. J. Commodity Mark. 35, 100408 (2024). https://doi.org/10.1016/j.jcomm.2024.100408

    Article 

    Google Scholar
     

  • Shirvani, A., Mittnik, S., Lindquist, W.B., Rachev, S.: Bitcoin volatility and intrinsic time using double-subordinated L’evy processes. Risks 12, 82 (2024). https://doi.org/10.3390/risks12050082

    Article 

    Google Scholar
     

  • Sah, K.K., Gowrisankar, S.: Efficient numerical scheme for generalized Black–Scholes equations on piecewise uniform Shishkin-type mesh. Int. J. Appl. Comput. Math. 9, 152 (2023). https://doi.org/10.1007/s40819-023-01640-1

    Article 
    MathSciNet 

    Google Scholar
     

  • Thomas, L.L.: Elliptic Problems in Linear Differential Equations Over a Network: Watson Scientific Computing Laboratory, p. 6. Columbia University, New York (1949)


    Google Scholar
     

  • Lee, C., Nam, Y., Bang, M., Ham, S., Kim, J.: Numerical investigation of the dynamics for a normalized time-fractional diffusion equation. AIMS Math. 9(10), 26671–26687 (2024). https://doi.org/10.3934/math.20241297

    Article 
    MathSciNet 

    Google Scholar
     

  • Kwak, S.: Practical implementation of boundary conditions in the Thomas algorithm. J. Korean Soc. Ind. Appl. Math. 29, 171–183 (2025). https://doi.org/10.12941/jksiam.2025.29.171

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hwang, Y., Kwak, S., Jyoti, A., Kim, J.: Optimal time-dependent SUC model for COVID-19 pandemic in India. BMC Infect. Dis. 24, 1031 (2024). https://doi.org/10.1186/s12879-024-09961-2

    Article 

    Google Scholar
     

  • The MathWorks Inc.: MATLAB (Version 2024a) [software], Natick, MA (1994). http://www.mathworks.com/

  • Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368 (2000). https://doi.org/10.1137/S0036142999355921

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Maurya, V., Singh, A., Rajpoot, M.K.: Option pricing using the IMEX-AVF method with high jump intensity. J. Comput. Appl. Math. 471, 116759 (2026). https://doi.org/10.1016/j.cam.2025.116759

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Singh, A., Maurya, V., Rajpoot, M.K.: Numerical valuation of American options with liquidity shocks using IMEX methods. Numer. Algorithms (2025). https://doi.org/10.1007/s11075-025-02148-z

    Article 

    Google Scholar
     



  • Source link